530. The Colour Isomerism and Structure of Some Copper Co-ordination Compounds. Part IV.* The Structure of NN'-Disalicylideneethylenediaminecopper.

By D. Hall and T. N. Waters.

A two-dimensional X-ray analysis has shown that $N N^{\prime}$-disalicylideneethylenediaminecopper is dimeric, with two copper-oxygen bonds of length $2 \cdot 41 \AA$ binding the two units of the dimer in a manner similar to that recently found in copper dimethylglyoxime. There is some distortion of the molecule to allow formation of the dimer while maintaining van der Waals contact distances between non-bonding atoms.

The configuration about the quinquecovalent copper atoms is pyramidal in accordance with previous observations on the colour and spectra of similar copper complexes.

As a further check on the explanation put forward ${ }^{1}$ for the colour isomerism of some copper complexes the co-ordination arrangement of $N N^{\prime}$-disalicylidene-ethylenediaminecopper has been ascertained by X-ray methods.

Experimental

Crystals previously prepared ${ }^{1}$ were recrystallised from nitrobenzene, giving dark green plates. The crystal data were: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cu}, M=329 \cdot 9$, monoclinic, $a=26 \cdot 55 \pm 0 \cdot 1$, $b=6.93 \pm 0.02, c=14.60 \pm 0.05 \AA, \beta=97.5^{\circ} \pm 0.5^{\circ}$ (values previously reported ${ }^{2}$ are $\left.a=26.50 \pm 0.1, b=7.05 \pm 0 \cdot 1, c=14.80 \pm 0.15 \AA, \beta=82 \cdot 1^{\circ}\right), U=2663 \AA^{3}, D_{\mathrm{m}}=1 \cdot 61$ g./c.c. by flotation, $Z=8, D_{c}=1 \cdot 644 \mathrm{~g} . /$ c.c., $F(000)=1352$. Space group, $C_{c}^{2}\left(C_{2 /}^{6}\right.$, No. 15). $\mathrm{Cu}-K_{\alpha}$ radiation, single-crystal oscillation, and rotation photographs. The space group $C_{\bar{c}}^{2}$ was chosen after the statistical test due to Howells, Phillips, and Rogers ${ }^{3}$ showed the (010) projection to be centrosymmetric. Intensity data were collected for the $h k 0, h 0 l$, and $h \mathbf{1 l}$ zones, the multiple-film method being used. Relative intensities were estimated by visual comparison against a standard scale. Absorption corrections were not applied as small sections of crystals were used.

Although a postulated structure, derived from consideration of the packing of the molecules, was available, ${ }^{2}$ an independent analysis was made. The co-ordinates of the copper atom were first determined from two-dimensional Patterson functions, sharpened according to the method of Donohue and Trueblood, ${ }^{4}$ and the heavy-atom method was then applied. It was assumed that the heavy-atom co-ordinates obtained from the Patterson functions were accurate and that the signs of the structure factors were those of the copper contributions in most instances. The first electron-density map was computed for the (001) projection and as in the previous analysis ${ }^{5}$ initial atomic positions were tentatively established by means of a model (shown in Fig. 1 with the numbering of the atoms) and by computing a number of difference cycles. An approximate scaling factor was used together with the atomic scattering and temperature factors determined for $N N^{\prime}$-disalicylidenepropane-1,2-diaminecopper monohydrate. ${ }^{5}$ The co-ordinates were then refined by means of four difference-cycles, the same scattering and temperature factors being used and with $F_{\text {obs. }}$ brought to the absolute scale by successive least-squares adjustments. At this stage the reliability factor was 0.20 for all observed planes, and the refinement was stopped. The final electron-density map is shown in Fig. 3.

The (010) projection was analysed similarly. For the first electron-density map, based on the heavy-atom contribution, 193 of 215 observed planes were used. The model was then placed on this map and the z-co-ordinates of the atoms estimated. With the x-co-ordinates from the previous projection these atomic positions gave a reliability factor of 0.28 for all

[^0]observed planes. Two difference cycles were computed by using the same atomic scattering factors and temperature factors as before. The reliability factor was then $0 \cdot 18$ for observed planes and the refinement was stopped, the final electron-density map being shown in Fig. 4.

Fig. 1. The model used as a guide, showing the numbering of the atoms and the calculated bond lengths.

In order to determine whether the (010) projection had been referred to an origin at a centre of symmetry or at a two-fold axis, $h 11$ structure factors were calculated for both these possibilities. A comparison with the observed amplitudes, brought to the absolute scale through common reflections, showed:
(i) reliability factor for origin at a centre of symmetry $=0 \cdot 13$,
and
(ii) reliability factor for origin at a two-fold axis $=\mathbf{0 . 8 3}$.

Fig. 2. Calculated bond lengths.

Additional angles

 $\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(1) \quad 89^{\circ}$ $\begin{array}{ll}\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1) & 90^{\circ} \\ \mathrm{N}(1)-\mathrm{Cu}(2) & 82^{\circ}\end{array}$ $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(2) \quad 95^{\circ}$

Observed structure amplitudes and calculated structure factors are listed in Table 2. The atomic co-ordinates referred to an origin at a centre of symmetry are given in Table 1 as fractions of the unit translations.

Where the x-co-ordinates disagreed between projections those of the (010) projection were
Table 1.

taken because of the better resolution. The greatest disagreements were 0.011 for $\mathrm{C}(8)$, 0.007 for $\mathrm{C}(10), 0.006$ for $\mathrm{N}(1)$, and 0.004 for $\mathrm{C}(12)$ and $\mathrm{C}(15)$ (numbered as in Fig. 1).

The standard deviation in atomic positions has not been assessed but the poor resolution attained and the discrepancies between the x-co-ordinates suggest that the derived parameters cannot be very accurate. This view is reflected in the calculated bond lengths and angles shown in Figs. 1 and 2, respectively.

TAbLe 2. Observed structure amplitudes and calculated structure factors $(\times 10)$.

Discussion

The complexity of the atomic arrangement in the (001) projection where there are four overlapping molecules can be seen from Fig. 3. The disposition in the (010) projection is displayed in Fig. 4 which also gives calculated values for some of the intermolecular distances. The asymmetry of the benzene rings as they appear in Fig. 3 arises from errors in the refinement, but the regularity of the rings in Fig. 4 indicates that more reliance can

Fig. 3. Electron density along the [c] axis.

Copper contours are at arbitrary intervals; other contours are at $1 \mathrm{e}^{-2}$ intervals, the lowest at $7 \mathrm{e} \AA^{-2}$.
be placed on the atomic positions in this projection. From this it would appear that the non-planarity of the central co-ordinated group is probably real. Equally evident from Fig. 4 is the twist in the ethylene bridge and the bending of the ends of the molecule away from its neighbour across the centre of symmetry.

The explanation for these distortions can be deduced from the intermolecular distances shown in Fig. 4. The close approach, to within $2 \cdot 41 \AA$, of an oxygen atom, $O(2)$, of one molecule and the copper atom of another indicates covalent bonding between them. The geometry of the arrangement (Fig. 5) shows that the bond is towards one of the octahedral co-ordinating positions of the copper atom. The other octahedral position is close to a

Fig. 4. Electron density along the [b] axis and intermolecular distances. Contours as in Fig. 3 but lowest at $5 \mathrm{e}^{-2}$.

carbon, $\mathrm{C}(9)$, of a neighbouring ethylene bridge which has been distorted to maintain the copper-carbon distance at $3.84 \AA$. Calculation shows that the bridge atom, $C(8)$, is $+0.1 \AA$ from the plane through $\mathrm{N}(1), \mathrm{Cu}$, and $\mathrm{N}(2)$, and that $\mathrm{C}(9)$ is $-0.6 \AA$ from this plane. (Positive distances are measured away from the origin which is not in the plane.) Even after allowance for the low accuracy of the analysis these figures suggest some distortion. Thus deviations from overall planarity seen in the (010) projection are undoubtedly
due to the close intermolecular approach and the twisting of the ethylene bridge. In particular the molecules must be bent to allow the almost parallel benzene rings of the close neighbours to be kept a van der Waals contact distance apart. The centres of the molecules approach to a distance of $2.41 \AA$ but this increases to more than $4.0 \AA$ at the extremities, which illustrates the strength of the intermolecular bond.

The compound can best be described as dimeric with two long copper-oxygen bonds between the two halves of the dimer. This situation is similar to that found in copper dimethylglyoxime where dimers are formed by two long copper-oxygen bonds ${ }^{6}$ of $2 \cdot 43 \AA$. Each copper atom is five co-ordinated with a pyramidal arrangement of ligands in agreement with the earlier suggestion ${ }^{\mathbf{1}}$ that green salicylaldehyde complexes of copper have a covalency greater than four. The bond hybridisation of the copper is presumably $d s p^{3}$ with the promotion of one electron to a higher level, and the bond geometry of the unusually bound oxygen suggests normal $s p^{2}$ hybridisation (to give two normal intramolecular bonds and a lone pair) with the unhydridised p orbital taking part in the third long bond.

The close stacking in the crystal of this essentially planar molecule contrasts with that of its propane-1,2-diamine analogue ${ }^{5}$ where the projecting methyl group introduces voids

Fig. 5. The geometry of the copper-oxygen bonds.
into the structure. This difference accounts for the higher density of crystals of the ethylenediamine complex and is the probable explanation of the fact that this compound, in contrast to its analogue, does not form a hydrate.

The structure found differs in detail only from that proposed by von Stackelberg ${ }^{2}$ on packing considerations. The present analysis has, however, disclosed the dimeric nature of the compound. The main orientations of the molecules proposed by von Stackelberg have been verified.

Grateful acknowledgment is made to the Research Grants Committee of the University of New Zealand for financial assistance.
(D. H.) Chemistry Department, University of Auckland, New Zealand.
(T. N. W.) Chemistry Division, A.E.R.E., Harwell, Berks, England.
[Received, November 2nd, 1959.]
${ }^{6}$ Frasson, Bardi, and Bezzi, Acta Cryst., 1959, 12, 201.

[^0]: * Part III, preceding paper.
 ${ }^{1}$ Part I, $J ., 1959,1200$; Part II, $J ., 1959,1203$.
 ${ }^{2}$ von Stackelberg, Z. anorg. Chem., 1947, 253, 136.
 ${ }^{3}$ Howells, Phillips, and Rogers, Acta Cryst., 1950, 3, 210.
 ${ }^{4}$ Donohue and Trueblood, Acta Crvst.. 1952. 5. 414.
 ${ }_{5}$ Part III, preceding paper.

